Assessment Structure: Associate in Science (AS) Degree

Declared AS students (2017): 773 18.72\% ($n=4129$)

Degree Requirements	AS
Communications	9 hrs
Math	$6-9 \mathrm{hrs}$
Life \& Physical Sciences	$10-11$ hrs (with 1 lab)
Humanities \& Fine Arts	6 hrs
Social \& Behavioral Sciences	6 hrs (at least 2 dis.)
GenEd (GECC) subtotal	$37-41 \mathrm{hrs}$
Electives	$10-27 \mathrm{hrs}$
Hrs. Rec. to Graduate	60 hrs

\section*{Top 5 Courses (SP16-SP17): \\ Course | \# of |
| :---: |
| Students |}

ENGLISH-101 322

ENGLISH-102 277
SPEECH-101 251
BIOLOGY-121 225
CHEM-201 180180

Other AS-popular courses:

Course	\# of
Students	

BIOLOGY-121	225
CHEM-201	180

CHEM-121 179
MATH-207 146
PSYCH-201 137
FIN ART-104 135
ART-103 127

MATH-140 125
HUM-201 123
MUSIC-121 119
BIOLOGY-226 118
CIS-120 108

Three Assessment Tiers

1) Course-level SLOs: semester-long assessment and evaluation by individual faculty/dept.
2) Multi-Section Courses/Dept: select multi-section course SLO assessment by department
3) General Education Outcomes by Degree: cyclical, cross-college studies by Assessment Committee

Assessment Structure: Associate in Science (AS) Degree

General Education Outcomes for the AS Degree

Outcome \#1: Communication-Written \& Oral
Goal: The student communicates effectively in both written and oral formats. (last assessed: Spring 2015 and Spring 2016)

Student Learning Outcomes:

1. Address specific audiences on a variety of topics for specific purposes and within specific formats
2. Adapt one's message to different discourse communities
3. Observe conventions of Standard English usage, grammar, syntax, punctuation, and mechanics
4. Provide appropriate, accurate, and fair support for one's claims, based on audience and discipline
5. Anticipate and respond respectfully to an audience's opinions, questions, and counter-arguments
6. Speak with clarity and appropriate volume

Outcome \#2: Inquiry \& Analysis

Goal: The student gathers, interprets and analyzes information. (last assessed: 2010-2011)

Student Learning Outcomes:

1. Use appropriate research methodologies
2. Collect, organize, and analyze information
3. Identify patterns and relationships
4. Draw appropriate conclusions from the data
5. Design and execute studies using scientific reasoning

Outcome \#3: Critical Thinking

Goal: The student demonstrates the ability to think critically, abstractly, and logically. (last assessed: 2010-2011)

Student Learning Outcomes:

1. Formulate a hypothesis/thesis
2. Establish criteria for evaluation AND select or construct a method for testing the hypothesis
3. Reason from sound premises to a valid conclusion
4. Apply knowledge to new situations
5. Synthesize knowledge

Outcome \#4: Civic Engagement and Human Diversity

Goal: The student exhibits social and ethical responsibility and is aware of her or his place in the global community. (last assessed: 2012)
Student Learning Outcomes:

1. Analyze contemporary multicultural, global, and international questions in a diverse setting.
2. Acknowledge and respect that there are various ways of thinking, communicating, and interacting, for example, by working with culturally diverse groups towards a larger goal.
3. Identify diverse moral and intellectual perspectives, principles, systems, and structures.
4. Articulate the value of cross cultural and community activities and their impact on the lives of others.

Outcome \#5: Quantitative Skills (new/draft - Fall 2016)

Goal: The student considers mathematical models within real-world contexts to make good predictions, judgements, and decisions.

Student Learning Outcomes:

1. Represent information symbolically, visually, numerically, and verbally.
2. Use mathematics to determine reasonableness, evaluate models, and select optimal results.
3. Recognize and show good judgement regarding the limitations of mathematical and scientific methods.
4. Interpret information and develop and draw conclusions from mathematical models (e.g. formulas, graphs, tables, schematics).
